

Monday 27 June 2016 – Morning

A2 GCE MATHEMATICS (MEI)

4764/01 Mechanics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4764/01
- MEI Examination Formulae and Tables (MF2)

Other materials required: • Scientific or graphical calculator Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book.** If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \,\mathrm{m}\,\mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (24 marks)

- 1 A car of mass *m* moves horizontally in a straight line. At time *t* the car is a distance *x* from a point O and is moving away from O with speed *v*. There is a force of magnitude kv^2 , where *k* is a constant, resisting the motion of the car. The car's engine has a constant power *P*. The terminal speed of the car is *U*.
 - (i) Show that

$$mv^2 \frac{\mathrm{d}v}{\mathrm{d}x} = P\left(1 - \frac{v^3}{U^3}\right).$$
[3]

(ii) Show that the distance moved while the car accelerates from a speed of $\frac{1}{4}U$ to a speed of $\frac{1}{2}U$ is

$$\frac{mU^3}{3P}\ln A,$$

stating the exact value of the constant A.

about an axis through P perpendicular to PQ is I.

Once the car attains a speed of $\frac{1}{2}U$, no further power is supplied by the car's engine.

(iii) Find, in terms of m, P and U, the time taken for the speed of the car to reduce from $\frac{1}{2}U$ to $\frac{1}{4}U$. [3]

2 A thin rigid rod PQ has length 2*a*. Its mass per unit length, ρ , is given by $\rho = k\left(1 + \frac{x}{2a}\right)$ where *x* is the distance from P and *k* is a positive constant. The mass of the rod is *M* and the moment of inertia of the rod

(i) Show that $I = \frac{14}{9}Ma^2$. [5]

The rod is initially at rest with Q vertically below P. It is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through P. The rod is struck a horizontal blow perpendicular to the fixed axis at the point where $x = \frac{3}{2}a$. The magnitude of the impulse of this blow is J.

- (ii) Find, in terms of *a*, *J* and *M*, the initial angular speed of the rod. [2]
- (iii) Find, in terms of *a*, *g* and *M*, the set of values of *J* for which the rod makes complete revolutions. [5]

[6]

Section B (48 marks)

3 Fig. 3 shows a uniform rigid rod AB of length 2*a* and mass 2*m*. The rod is freely hinged at A so that it can rotate in a vertical plane. One end of a light inextensible string of length *l* is attached to B. The string passes over a small smooth fixed pulley at C, where C is vertically above A and AC = 6*a*. A particle of mass λm , where λ is a positive constant, is attached to the other end of the string and hangs freely, vertically below C. The rod makes an angle θ with the upward vertical, where $0 \le \theta \le \pi$. You may assume that the particle does not interfere with the rod AB or the section of the string BC.

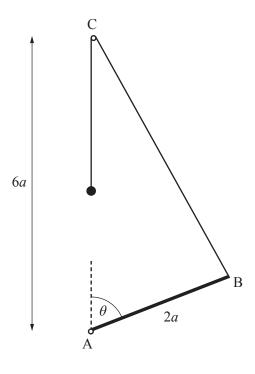


Fig. 3

(i) Find the potential energy, *V*, of the system relative to a situation in which the rod AB is horizontal, and hence show that

$$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1\right).$$
 [6]

- (ii) Show that $\theta = 0$ and $\theta = \pi$ are the only values of θ for which the system is in equilibrium whatever the value of λ . [2]
- (iii) Show that, if there is a third value of θ for which the system is in equilibrium, then $\frac{2}{3} < \lambda < \frac{4}{3}$. [4]
- (iv) Given that there are three positions of equilibrium, establish whether each of these positions is stable or unstable. [10]

It is given that, for small values of θ ,

$$\frac{\mathrm{d}V}{\mathrm{d}\theta} \approx 2mga\left[\left(\frac{3}{2}\lambda - 1\right)\theta - \left(\frac{13}{16}\lambda - \frac{1}{6}\right)\theta^3\right].$$

(v) Investigate the stability of the equilibrium position given by $\theta = 0$ in the case when $\lambda = \frac{2}{3}$. [2]

Turn over

- 4 A raindrop falls from rest through a stationary cloud. The raindrop has mass m and speed v when it has fallen a distance x. You may assume that resistances to motion are negligible.
 - (i) Derive the equation of motion

$$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg\,.$$
[4]

Initially the mass of the raindrop is m_0 . Two different models for the mass of the raindrop are suggested.

- In the first model $m = m_0 e^{k_1 x}$, where k_1 is a positive constant.
- (ii) Show that

$$v^2 = \frac{g}{k_1} (1 - e^{-2k_1 x})$$

and hence state, in terms of g and k_1 , the terminal velocity of the raindrop according to this first model. [7]

In the second model $m = m_0(1 + k_2 x)$, where k_2 is a positive constant.

(iii) By considering the expression obtained from differentiating $v^2(1+k_2x)^2$ with respect to x, show that, for the second model, the equation of motion in part (i) may be written as

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 (1+k_2 x)^2 \right] = 2g(1+k_2 x)^2.$$

Hence find an expression for v^2 in terms of g, k_2 and x.

(iv) Suppose that the models give the same value for the speed of the raindrop at the instant when it has doubled its initial mass. Find the exact value of $\frac{k_1}{k_2}$, giving your answer in the form $\frac{a}{b}$ where a and b are integers. [4]

END OF QUESTION PAPER

Copyright Information

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[9]

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

Monday 27 June 2016 – Morning

A2 GCE MATHEMATICS (MEI)

4764/01 Mechanics 4

PRINTED ANSWER BOOK

Candidates answer on this Printed Answer Book.

OCR supplied materials:

- Question Paper 4764/01 (inserted)
- MEI Examination Formulae and Tables (MF2)

Other materials required: • Scientific or graphical calculator

MF2)

Duration: 1 hour 30 minutes

Candidate	
forename	

Candidate surname

Centre number						Candidate number					
---------------	--	--	--	--	--	------------------	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \,\mathrm{m}\,\mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

1 (i)	
1 (ii)	
	(answer space continued on next page)
	(answer space continueu on next page)

1 (ii)	(continued)
- ()	
1 (iii)	

2 (i)	
2 (ii)	
- ()	

2 (iii)	
,	
,	

3(i)	
5(1)	
3 (ii)	
	(answer space continued on next page)

3 (ii)	(continued)
3 (iii)	

3(iv)	
5(17)	
,	
	(answer space continued on next page)

3(iv)	(continued)

2(-)	
3 (v)	

4 (i)	

4 (ii)	

4(iii)	
	(answer space continued on next page)

4(iii)	(continued)

4(iv)

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

© OCR 2016 Contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

GCE

Mathematics (MEI)

Unit 4764: Mechanics 4

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
101	
soi	Seen or implied
soi	Seen or implied

2. Subject-specific Marking Instructions for GCE Mathematics (MEI) Mechanics strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed and we do not penalise over-specification.

When a value is given in the paper

Only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case.

When a value is not given in the paper

Accept any answer that agrees with the correct value to 2 s.f.

ft should be used so that only one mark is lost for each distinct error made in the accuracy to which working is done or an answer given.

Mark Scheme

Refer cases to your Team Leader where the same type of error (e.g. errors due to premature approximation leading to error) has been made in different questions or parts of questions.

There are some mistakes that might be repeated throughout a paper. If a candidate makes such a mistake, (eg uses a calculator in wrong angle mode) then you will need to check the candidate's script for repetitions of the mistake and consult your Team Leader about what penalty should be given.

There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working.

'Fresh starts' will not affect an earlier decision about a misread.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

4764

(Questi	on	Answer	Marks	Guidance
1	(i)		$\frac{P}{U} = kU^2$	B1	
			$\frac{P}{v} - kv^2 = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1	For use of N2L with any expression for a (3 terms)
			$P\left(1 - \frac{v^3}{U^3}\right) = mv^2 \frac{\mathrm{d}v}{\mathrm{d}x}$	E1	
				[3]	
1	(ii)		$P\int \mathrm{d}x = mU^3 \int \frac{v^2 \mathrm{d}v}{U^3 - v^3}$	M1	Separate variables – condone minor slips
				M1	Integrate – of the form $Px = k \ln U^3 - v^3 (+c) \operatorname{cst.} k$
			$Px = -\frac{1}{3}mU^{3}\ln U^{3} - v^{3} (+c)$	A1	
			$x = 0, v = \frac{1}{4}U$ to find <i>c</i> and substitute $v = \frac{1}{2}U$	M1	Use initial condition – or for use of limits on definite integral
			$Px = -\frac{mU^{3}}{3} \left[\ln \left(U^{3} - \frac{1}{8}U^{3} \right) - \ln \left(U^{3} - \frac{1}{64}U^{3} \right) \right]$	A1	AEF
			$x = \frac{mU^3}{3P} \ln\left(\frac{9}{8}\right)$ so $A = \frac{9}{8}$	E1	
				[6]	
1	(iii)		$-\frac{P}{U^3}v^2 = m\frac{\mathrm{d}v}{\mathrm{d}t} \Longrightarrow \int \frac{\mathrm{d}v}{v^2} = -\frac{P}{mU^3}\int \mathrm{d}t$	B1	Use of $a = \frac{dv}{dt}$, power = 0 and separate variables
			$-\frac{1}{v} = -\frac{P}{mU^3}t + c$, $t = 0, v = \frac{1}{2}U \Longrightarrow c = -\frac{2}{U}$	M1	Attempt to integrate and use conditions to find $+c$
			$t = \frac{2mU^2}{P}$	A1	If left in terms of k eg $t = \frac{2m}{kU}$ then B1M1A0
				[3]	

(Questio	on	Answer	Marks	Guidance
2	(i)		$M = k \int_0^{2a} \left(1 + \frac{x}{2a} \right) dx = k \left[x + \frac{x^2}{4a} \right]_0^{2a}$	M1	Attempt to integrate (limits not required)
			M = 3ka	A1	
			$I = k \int_0^{2a} \left(1 + \frac{x}{2a} \right) x^2 \mathrm{d}x$	B1	Limits not required
			$=k\left[\frac{x^3}{3}+\frac{x^4}{8a}\right]_0^{2a}$	M1	Attempt to integrate and substitute limits
			$I = \frac{14}{9}Ma^2$	E1	
			9	[5]	
2	(ii)		$\frac{3}{2}aJ = \left(\frac{14}{9}Ma^2\right)\omega$	M1	Conservation of angular momentum
			$\omega = \frac{27J}{28Ma}$	A1	
				[2]	
2	(iii)		$3ka\overline{x} = k \int_0^{2a} \left(x + \frac{x^2}{2a} \right) \mathrm{d}x$	B1	Limits not required
			$= \left[\frac{x^2}{2} + \frac{x^3}{6a}\right]_0^{2a}$	M1	Attempt to integrate (limits not required) to find c of m
			$\overline{x} = \frac{10}{9}a$	A1	
			$-\frac{20}{9}Mga + \frac{1}{2}\left(\frac{14}{9}Ma^{2}\right)\left(\frac{27J}{28Ma}\right)^{2} > 0$	M1	Conservation of energy using their \overline{x} (accept \geq or =) must substitute for their ω - condone errors in PE term
			$J > \frac{8}{27} M \sqrt{35ga}$	A1	$AEF - accept \ge$
			27	[5]	

(Questio	on	Answer	Marks	Guidance
3	(i)		$BC^{2} = (6a)^{2} + (2a)^{2} - 2(6a)(2a)\cos\theta$	B1	$BC = 2a\sqrt{10 - 6\cos\theta}$
			$V = \lambda mg \left(BC - \sqrt{40}a \right) + \dots$ $\dots + 2mga \cos \theta$	M1 B1 M1	GPE for λmg particle – accept $\lambda mg(6a - (l - BC))$ - where BC is a function of θ GPE for rod Differentiate
			$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \lambda mga (10 - 6\cos\theta)^{-\frac{1}{2}} (6\sin\theta) + 2mga (-\sin\theta)$	A1	AEF
			$= 2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1\right)$	E1	www
				[6]	
3	(ii)		$2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1\right) = 0 \Longrightarrow \sin\theta = 0 \text{ or}$ $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$	M1	
			$\sin \theta = 0 \Longrightarrow \theta = 0$ or π while any other positions are dependent on λ	A1 [2]	Must include consideration of $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$
3	(iii)		$2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}}-1\right) = 0$		Award first two marks for this part if seen in (ii) – regardless of what appears in (iii)
			so $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$	M1	
			$\Rightarrow \cos\theta = \frac{10 - 9\lambda^2}{6}$	A1	
			Since $0 < \theta < \pi$, $-1 < \frac{10 - 9\lambda^2}{6} < 1$	M1	Must state $0 < \theta < \pi$ or $-1 < \cos \theta < 1$ (oe e.g. $4 < 10 - 6\cos \theta < 16$) - condone \leq for the M mark only
			$\Rightarrow \frac{2}{3} < \lambda < \frac{4}{3}$	E1	
				[4]	

⁴⁷⁶⁴

	Question	Answer	Marks	Guidance	
3	(iv)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 2mga\cos\theta \left(3\lambda \left(10 - 6\cos\theta\right)^{-\frac{1}{2}} - 1\right)$	M1* A1	Differentiate using product/quotient rule	
		$+2mga\sin\theta\left(-\frac{3}{2}\lambda\left(10-6\cos\theta\right)^{\frac{3}{2}}(6\sin\theta)\right)$	A1		
			M1 dep*	Substituting $\theta = \pi$ into their V " and attempt to simplify	
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -2mga\left(\frac{3\lambda}{4} - 1\right) > 0 \implies \text{stable}$	A1	Correct V " and conclusion	
			M1 dep*	Setting $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1$ equal to zero in their V" - dependent on first M mark	
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -18mga\lambda\sin^2\theta \left(10 - 6\cos\theta\right)^{-3/2} < 0 \Longrightarrow \text{ unstable}$	A1	Correct V " and conclusion	
			M1 dep*	Substituting $\theta = 0$ into their V" and attempt to simplify – dependent on first M mark	
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 2mga\left(\frac{3\lambda}{2} - 1\right) > 0 \Longrightarrow \text{stable}$	A1	Correct V " and conclusion	
			A1	Clear justification of each value of V " for the three cases with particular reference made to the values of λ in the interval $\frac{2}{3} < \lambda < \frac{4}{3}$ (dependent on all	
			[10]	previous marks earned in this part)	

	Question		Answer	Marks	Guidance
3	(v)		$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -\frac{3}{4}mga\theta^3 + \cdots$	M1	Substituting $\lambda = \frac{2}{3}$ and using first derivative test only
			When $\theta = 0^-$, $\frac{dV}{d\theta} > 0$ and when $\theta = 0^+$, $\frac{dV}{d\theta} < 0$ \therefore unstable at $\lambda = \frac{2}{3}$	A1 [2]	CAO – allow accurate sketch of the form $y = -x^3$

4764

(Questio	n	Answer	Marks	Guidance
4	(i)			M1	Impulse = change in momentum
			$(m+\delta m)(v+\delta v)-(mv+\delta m(0))=(m+\delta m)g\delta t$	A1	Condone lack of δm on rhs
			$m\frac{\delta v}{\delta t} + v\frac{\delta m}{\delta t} + \frac{\delta m}{\delta t}\frac{\delta v}{\delta t}\delta t = mg + g\frac{\delta m}{\delta t}\delta t$	M1	Form differential equation
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$	E1	Complete argument
				[4]	
		OR	$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg$	M1A1	
			$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg \Longrightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} + v\frac{\mathrm{d}m}{\mathrm{d}t} = mg$	A1	
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}m}{\mathrm{d}t} mv\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}m}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t} = mg \Longrightarrow mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$	E1	
4	(ii)		$\frac{\mathrm{d}m}{\mathrm{d}x} = m_0 k_1 \mathrm{e}^{k_1 x}$	B1	
			$v \frac{\mathrm{d}v}{\mathrm{d}x} = g - k_1 v^2 \Longrightarrow \int \frac{v \mathrm{d}v}{g - k_1 v^2} = \int \mathrm{d}x$	M1	Substitute <i>m</i> and $\frac{dm}{dt}$ and separate variables
				M1	Integrate of the form $\lambda \ln(g - k_1 v^2) = x(+c)$ cst. λ
			$-\frac{1}{2k_1}\ln\left(g-k_1v^2\right) = x+c$	A1	Including + <i>c</i>
			$x = 0, v = 0 \Longrightarrow c = -\frac{1}{2k_1} \ln g$	M1	Use conditions to obtain c and attempt to make v^2 the subject
			$v^{2} = \frac{g}{k_{1}} \left(1 - e^{-2k_{1}x} \right)$	E1	www after correct integration
			Terminal velocity is $\sqrt{\frac{g}{k_1}}$	B1	
				[7]	

(Question		Answer	Marks	Guidance
4	(iii)		$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] =$	M1	Differentiate $v^2 (1+k_2 x)^2$ using product rule
			$2v\frac{dv}{dx}(1+k_{2}x)^{2}+2k_{2}v^{2}(1+k_{2}x)$	A1 A1	A1 for each term
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$ and $m = m_0(1+k_2x)$		
			$\frac{\mathrm{d}m}{\mathrm{d}x} = k_2 m_0 \Longrightarrow (1+k_2 x) v \frac{\mathrm{d}v}{\mathrm{d}x} + k_2 v^2 = (1+k_2 x) g$	B1	Correct $\frac{\mathrm{d}m}{\mathrm{d}x}$ and substitute both m and $\frac{\mathrm{d}m}{\mathrm{d}x}$ into DE
			$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] = 2 \left(1 + k_2 x \right) \left(\left(1 + k_2 x \right) g - k_2 v^2 \right) + 2k_2 v^2 \left(1 + k_2 x \right)$		
			$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] = 2g \left(1 + k_2 x \right)^2$	E1	Working must be clear (dependent on all previous marks)
			$v^{2}(1+k_{2}x)^{2} = 2g \int (1+k_{2}x)^{2} dx$	B1	
			$=2g\left(\frac{\left(1+k_2x\right)^3}{3k_2}\right)(+c)$	B1	
			$v = 0, x = 0 \Longrightarrow c = -\frac{2g}{3k_2}$	M1	Use conditions to find $+c$ or limits from 0 to x on definite integral
			$v^{2} = \frac{2g}{3k_{2}} \left[1 + k_{2}x - \frac{1}{\left(1 + k_{2}x\right)^{2}} \right]$	A1	oe eg $v^2 = \frac{2gx\left(1 + k_2 x + \frac{1}{3}k_2^2 x^2\right)}{(1 + k_2 x)^2}$
				[9]	

4764

(Question		Answer	Marks	Guidance
4	(iv)		First model: $x = \frac{1}{k_1} \ln 2$	B1	
			Second model: $x = \frac{1}{k_2}$	B1	
			$\frac{2g}{3k_2} \left(1 + k_2 \left(\frac{1}{k_2} \right) \right) - \frac{2g}{3k_2 \left(1 + k_2 \left(\frac{1}{k_2} \right) \right)^2} = \frac{g}{k_1} \left(1 - e^{-2k_1 \left(\frac{1}{k_1} \ln 2 \right)} \right)$	M1	Substitute both x values and equate
			$\frac{k_1}{k_2} = \frac{9}{14}$	A1 [4]	
		OR			
			First model: $e^{k_1 x} = 2$	B1	
			Second model: $k_2 x = 1$	B1	
			$\frac{3g}{4k_1} = \frac{7g}{6k_2}$	M1	Substituting for both and equating expressions for v^2 for reference $v^2 = \frac{3g}{4k_1} (1^{\text{st}} \text{ model})$ and $v^2 = \frac{7g}{6k_2} (2^{\text{nd}} \text{ model})$ model)
			$\frac{k_1}{k_2} = \frac{9}{14}$	A1	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

GCE

Mathematics (MEI)

Unit 4764: Mechanics 4

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
101	
soi	Seen or implied
soi	Seen or implied

2. Subject-specific Marking Instructions for GCE Mathematics (MEI) Mechanics strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed and we do not penalise over-specification.

When a value is given in the paper

Only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case.

When a value is not given in the paper

Accept any answer that agrees with the correct value to 2 s.f.

ft should be used so that only one mark is lost for each distinct error made in the accuracy to which working is done or an answer given.

Mark Scheme

Refer cases to your Team Leader where the same type of error (e.g. errors due to premature approximation leading to error) has been made in different questions or parts of questions.

There are some mistakes that might be repeated throughout a paper. If a candidate makes such a mistake, (eg uses a calculator in wrong angle mode) then you will need to check the candidate's script for repetitions of the mistake and consult your Team Leader about what penalty should be given.

There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working.

'Fresh starts' will not affect an earlier decision about a misread.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

4764

(Questi	on	Answer	Marks	Guidance
1	(i)		$\frac{P}{U} = kU^2$	B1	
			$\frac{P}{v} - kv^2 = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1	For use of N2L with any expression for a (3 terms)
			$P\left(1 - \frac{v^3}{U^3}\right) = mv^2 \frac{\mathrm{d}v}{\mathrm{d}x}$	E1	
				[3]	
1	(ii)		$P\int \mathrm{d}x = mU^3 \int \frac{v^2 \mathrm{d}v}{U^3 - v^3}$	M1	Separate variables – condone minor slips
				M1	Integrate – of the form $Px = k \ln U^3 - v^3 (+c) \operatorname{cst.} k$
			$Px = -\frac{1}{3}mU^{3}\ln U^{3} - v^{3} (+c)$	A1	
			$x = 0, v = \frac{1}{4}U$ to find <i>c</i> and substitute $v = \frac{1}{2}U$	M1	Use initial condition – or for use of limits on definite integral
			$Px = -\frac{mU^{3}}{3} \left[\ln \left(U^{3} - \frac{1}{8}U^{3} \right) - \ln \left(U^{3} - \frac{1}{64}U^{3} \right) \right]$	A1	AEF
			$x = \frac{mU^3}{3P} \ln\left(\frac{9}{8}\right)$ so $A = \frac{9}{8}$	E1	
				[6]	
1	(iii)		$-\frac{P}{U^3}v^2 = m\frac{\mathrm{d}v}{\mathrm{d}t} \Longrightarrow \int \frac{\mathrm{d}v}{v^2} = -\frac{P}{mU^3}\int \mathrm{d}t$	B1	Use of $a = \frac{dv}{dt}$, power = 0 and separate variables
			$-\frac{1}{v} = -\frac{P}{mU^3}t + c$, $t = 0, v = \frac{1}{2}U \Longrightarrow c = -\frac{2}{U}$	M1	Attempt to integrate and use conditions to find $+c$
			$t = \frac{2mU^2}{P}$	A1	If left in terms of k eg $t = \frac{2m}{kU}$ then B1M1A0
				[3]	

(Questio	on	Answer	Marks	Guidance			
2	(i)		$M = k \int_0^{2a} \left(1 + \frac{x}{2a} \right) dx = k \left[x + \frac{x^2}{4a} \right]_0^{2a}$	M1	Attempt to integrate (limits not required)			
			M = 3ka	A1				
			$I = k \int_0^{2a} \left(1 + \frac{x}{2a} \right) x^2 \mathrm{d}x$	B1 Limits not required				
			$=k\left[\frac{x^3}{3}+\frac{x^4}{8a}\right]_0^{2a}$	M1	Attempt to integrate and substitute limits			
			$I = \frac{14}{9}Ma^2$	E1				
			9	[5]				
2	(ii)		$\frac{3}{2}aJ = \left(\frac{14}{9}Ma^2\right)\omega$	M1	Conservation of angular momentum			
			$\omega = \frac{27J}{28Ma}$	A1				
				[2]				
2	(iii)		$3ka\overline{x} = k \int_0^{2a} \left(x + \frac{x^2}{2a} \right) \mathrm{d}x$	B1	Limits not required			
			$= \left[\frac{x^2}{2} + \frac{x^3}{6a}\right]_0^{2a}$	M1	Attempt to integrate (limits not required) to find c of m			
			$\overline{x} = \frac{10}{9}a$	A1				
			$-\frac{20}{9}Mga + \frac{1}{2}\left(\frac{14}{9}Ma^{2}\right)\left(\frac{27J}{28Ma}\right)^{2} > 0$	M1	Conservation of energy using their \overline{x} (accept \geq or =) must substitute for their ω - condone errors in PE term			
			$J > \frac{8}{27} M \sqrt{35ga}$	A1	$AEF - accept \ge$			
			27	[5]				

(Questio	on	Answer	Marks	Guidance
3	(i)		$BC^{2} = (6a)^{2} + (2a)^{2} - 2(6a)(2a)\cos\theta$	B1	$BC = 2a\sqrt{10 - 6\cos\theta}$
			$V = \lambda mg \left(BC - \sqrt{40}a \right) + \dots$ $\dots + 2mga \cos \theta$	M1 B1 M1	GPE for λmg particle – accept $\lambda mg(6a - (l - BC))$ - where BC is a function of θ GPE for rod Differentiate
			$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \lambda mga (10 - 6\cos\theta)^{-\frac{1}{2}} (6\sin\theta) + 2mga (-\sin\theta)$	A1	AEF
			$= 2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1\right)$	E1	www
				[6]	
3	(ii)		$2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1\right) = 0 \Longrightarrow \sin\theta = 0 \text{ or}$ $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$	M1	
			$\sin \theta = 0 \Longrightarrow \theta = 0$ or π while any other positions are dependent on λ	A1 [2]	Must include consideration of $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$
3	(iii)		$2mga\sin\theta \left(\frac{3\lambda}{\sqrt{10-6\cos\theta}}-1\right) = 0$		Award first two marks for this part if seen in (ii) – regardless of what appears in (iii)
			so $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1 = 0$	M1	
			$\Rightarrow \cos\theta = \frac{10 - 9\lambda^2}{6}$	A1	
			Since $0 < \theta < \pi$, $-1 < \frac{10 - 9\lambda^2}{6} < 1$	M1	Must state $0 < \theta < \pi$ or $-1 < \cos \theta < 1$ (oe e.g. $4 < 10 - 6\cos \theta < 16$) - condone \leq for the M mark only
			$\Rightarrow \frac{2}{3} < \lambda < \frac{4}{3}$		
				[4]	

⁴⁷⁶⁴

	Question	Answer	Marks	Guidance
3	(iv)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 2mga\cos\theta \left(3\lambda \left(10 - 6\cos\theta\right)^{-\frac{1}{2}} - 1\right)$	M1* A1	Differentiate using product/quotient rule
		$+2mga\sin\theta\left(-\frac{3}{2}\lambda\left(10-6\cos\theta\right)^{\frac{3}{2}}(6\sin\theta)\right)$	A1	
			M1 dep*	Substituting $\theta = \pi$ into their V " and attempt to simplify
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -2mga\left(\frac{3\lambda}{4} - 1\right) > 0 \implies \text{stable}$	A1	Correct V " and conclusion
			M1 dep*	Setting $\frac{3\lambda}{\sqrt{10-6\cos\theta}} - 1$ equal to zero in their V" - dependent on first M mark
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -18mga\lambda\sin^2\theta \left(10 - 6\cos\theta\right)^{-3/2} < 0 \Longrightarrow \text{ unstable}$	A1	Correct V " and conclusion
			M1 dep*	Substituting $\theta = 0$ into their V" and attempt to simplify – dependent on first M mark
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 2mga\left(\frac{3\lambda}{2} - 1\right) > 0 \Longrightarrow \text{stable}$	A1	Correct V " and conclusion
			A1	Clear justification of each value of V " for the three cases with particular reference made to the values of λ in the interval $\frac{2}{3} < \lambda < \frac{4}{3}$ (dependent on all
			[10]	previous marks earned in this part)

	Question		Answer	Marks	Guidance
3	(v)		$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -\frac{3}{4}mga\theta^3 + \cdots$	M1	Substituting $\lambda = \frac{2}{3}$ and using first derivative test only
			When $\theta = 0^-$, $\frac{dV}{d\theta} > 0$ and when $\theta = 0^+$, $\frac{dV}{d\theta} < 0$ \therefore unstable at $\lambda = \frac{2}{3}$	A1 [2]	CAO – allow accurate sketch of the form $y = -x^3$

4764

(Questio	n	Answer	Marks	Guidance
4	(i)			M1	Impulse = change in momentum
			$(m+\delta m)(v+\delta v)-(mv+\delta m(0))=(m+\delta m)g\delta t$	A1	Condone lack of δm on rhs
			$m\frac{\delta v}{\delta t} + v\frac{\delta m}{\delta t} + \frac{\delta m}{\delta t}\frac{\delta v}{\delta t}\delta t = mg + g\frac{\delta m}{\delta t}\delta t$	M1	Form differential equation
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$	E1	Complete argument
				[4]	
		OR	$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg$	M1A1	
			$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg \Longrightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} + v\frac{\mathrm{d}m}{\mathrm{d}t} = mg$	A1	
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}m}{\mathrm{d}t} mv\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}m}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t} = mg \Longrightarrow mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$	E1	
4	(ii)		$\frac{\mathrm{d}m}{\mathrm{d}x} = m_0 k_1 \mathrm{e}^{k_1 x}$	B1	
			$v \frac{\mathrm{d}v}{\mathrm{d}x} = g - k_1 v^2 \Longrightarrow \int \frac{v \mathrm{d}v}{g - k_1 v^2} = \int \mathrm{d}x$	M1	Substitute <i>m</i> and $\frac{dm}{dt}$ and separate variables
				M1	Integrate of the form $\lambda \ln(g - k_1 v^2) = x(+c)$ cst. λ
			$-\frac{1}{2k_1}\ln\left(g-k_1v^2\right) = x+c$	A1	Including + <i>c</i>
			$x = 0, v = 0 \Longrightarrow c = -\frac{1}{2k_1} \ln g$	M1	Use conditions to obtain c and attempt to make v^2 the subject
			$v^{2} = \frac{g}{k_{1}} \left(1 - e^{-2k_{1}x} \right)$	E1	www after correct integration
			Terminal velocity is $\sqrt{\frac{g}{k_1}}$	B1	
				[7]	

(Questic	n	Answer	Marks	Guidance
4	(iii)		$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] =$	M1	Differentiate $v^2 (1+k_2 x)^2$ using product rule
			$2v\frac{dv}{dx}(1+k_{2}x)^{2}+2k_{2}v^{2}(1+k_{2}x)$	A1 A1	A1 for each term
			$mv\frac{\mathrm{d}v}{\mathrm{d}x} + v^2\frac{\mathrm{d}m}{\mathrm{d}x} = mg$ and $m = m_0(1+k_2x)$		
			$\frac{\mathrm{d}m}{\mathrm{d}x} = k_2 m_0 \Longrightarrow (1+k_2 x) v \frac{\mathrm{d}v}{\mathrm{d}x} + k_2 v^2 = (1+k_2 x) g$	B1	Correct $\frac{\mathrm{d}m}{\mathrm{d}x}$ and substitute both m and $\frac{\mathrm{d}m}{\mathrm{d}x}$ into DE
			$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] = 2 \left(1 + k_2 x \right) \left(\left(1 + k_2 x \right) g - k_2 v^2 \right) + 2k_2 v^2 \left(1 + k_2 x \right)$		
			$\frac{\mathrm{d}}{\mathrm{d}x} \left[v^2 \left(1 + k_2 x \right)^2 \right] = 2g \left(1 + k_2 x \right)^2$	Working must be clear (dependent on all previous marks)	
			$v^{2}(1+k_{2}x)^{2} = 2g \int (1+k_{2}x)^{2} dx$	B1	
			$=2g\left(\frac{\left(1+k_2x\right)^3}{3k_2}\right)(+c)$	B1	
			$v = 0, x = 0 \Longrightarrow c = -\frac{2g}{3k_2}$	M1	Use conditions to find $+c$ or limits from 0 to x on definite integral
			$v^{2} = \frac{2g}{3k_{2}} \left[1 + k_{2}x - \frac{1}{\left(1 + k_{2}x\right)^{2}} \right]$	A1	oe eg $v^2 = \frac{2gx\left(1 + k_2 x + \frac{1}{3}k_2^2 x^2\right)}{(1 + k_2 x)^2}$
				[9]	

4764

(Questic	on	Answer	Marks	Guidance					
4	(iv)		First model: $x = \frac{1}{k_1} \ln 2$	B1						
			Second model: $x = \frac{1}{k_2}$	B1						
			$\frac{2g}{3k_2}\left(1+k_2\left(\frac{1}{k_2}\right)\right) - \frac{2g}{3k_2\left(1+k_2\left(\frac{1}{k_2}\right)\right)^2} = \frac{g}{k_1}\left(1-e^{-2k_1\left(\frac{1}{k_1}\ln 2\right)}\right)$	M1	Substitute both x values and equate					
			$\frac{k_1}{k_2} = \frac{9}{14}$	A1 [4]						
		OR								
			First model: $e^{k_1 x} = 2$	B1						
			Second model: $k_2 x = 1$	B 1						
			$\frac{3g}{4k_1} = \frac{7g}{6k_2}$	M1	Substituting for both and equating expressions for v^2 for reference $v^2 = \frac{3g}{4k_1} (1^{\text{st}} \text{ model})$ and $v^2 = \frac{7g}{6k_2} (2^{\text{nd}} \text{ model})$ model)					
			$\frac{k_1}{k_2} = \frac{9}{14}$	A1						

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

GCE Mathematics (MEI)

			Max Mark	а	b	С	d	е	u
4751	01 C1 – MEI Introduction to advanced mathematics (AS)	Raw UMS	72 100	63 80	57 70	52 60	47 50	42 40	0 0
4752	01 C2 – MEI Concepts for advanced mathematics (AS)	Raw UMS	72 100	56 80	49 70	42 60	35 50	29 40	0 0
4753	01 (C3) MEI Methods for Advanced Mathematics with Coursework: Written Paper	Raw	72	58	52	47	42	36	0
4753	(C3) MEI Methods for Advanced Mathematics with Coursework: Coursework	Raw	18	15	13	11	9	8	0
1753	 (C3) MEI Methods for Advanced Mathematics with Coursework: Carried Forward Coursework Mark 	Raw	18	15	13	11	9	8	0
		UMS	100	80	70	60	50	40	0
4754	01 C4 – MEI Applications of advanced mathematics (A2)	Raw UMS	90 100	64 80	57 70	51 60	45 50	39 40	0 0
1755	01 FP1 – MEI Further concepts for advanced mathematics (AS)	Raw	72	59	53	48	43	38	0
		UMS	100	80	70	60	50	40	0
4756	01 FP2 – MEI Further methods for advanced mathematics	Raw	72	60	54	48	43	38	0
		UMS	100	80	70	60	50	40	0
4757	01 FP3 – MEI Further applications of advanced mathematics	Raw	72	60	54	49	44	39	0
		UMS	100	80	70	60	50	40	0
4758	01 (DE) MEI Differential Equations with Coursework: Written Paper	Raw	72	67	61	55	49	43	0
4758	02 (DE) MEI Differential Equations with Coursework: Coursework	Raw	18	15	13	11	9	8	0
1758	(DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark	Raw	18	15	13	11	9	8	0
		UMS	100	80	70	60	50	40	0
4761	01 M1 – MEI Mechanics 1 (AS)	Raw UMS	72 100	58 80	50 70	43 60	36 50	29 40	0 0
4762	01 M2 – MEI Mechanics 2 (A2)	Raw UMS	72 100	59 80	53 70	47 60	41 50	36 40	0 0
4763	01 M3 – MEI Mechanics 3 (A2)	Raw UMS	72 100	60 80	53 70	46 60	40 50	34 40	0 0
4764	01 M4 – MEI Mechanics 4 (A2)	Raw UMS	72 100	55 80	48 70	41 60	34 50	27 40	0 0
4766	01 S1 – MEI Statistics 1 (AS)	Raw UMS	72 100	59 80	52 70	46 60	40 50	34 40	0 0
4767	01 S2 – MEI Statistics 2 (A2)	Raw UMS	72	60	55	50	45	40	0
4768	01 S3 – MEI Statistics 3 (A2)	Raw	100 72	80 60	70 54	60 48	50 42	40 37	0
		UMS	100	80	70	60	50	40	0
1769	01 S4 – MEI Statistics 4 (A2)	Raw UMS	72 100	56 80	49 70	42 60	35 50	28 40	0 0
1771	01 D1 – MEI Decision mathematics 1 (AS)	Raw UMS	72 100	48 80	43 70	38 60	34 50	30 40	0 0
4772	01 D2 – MEI Decision mathematics 2 (A2)	Raw	72	55	50	45	40	36	0
		UMS	100	80	70	60	50	40	0
4773	01 DC – MEI Decision mathematics computation (A2)	Raw UMS	72 100	46 80	40 70	34 60	29 50	24 40	0 0
4776	01 (NM) MEI Numerical Methods with Coursework: Written Paper	Raw	72	55	49	44	39	33	0
4776	02 (NM) MEI Numerical Methods with Coursework: Coursework	Raw	18	14	12	10	8	7	0
4776	(NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
4777	01 NC – MEI Numerical computation (A2)	Raw	72	55	47	39	32	25	0
4///		UMS	100	80	70	60	50	40	0

Oxford Car	Oxford Cambridge and RSA		100	80	70	60	50	40	0
GCE Stati	stics (MEI)								
			Max Mark	а	b	С	d	е	u
G241	01 Statistics 1 MEI (Z1)	Raw UMS	72 100	59 80	52 70	46 60	40 50	34 40	0 0
G242	01 Statistics 2 MEI (Z2)	Raw UMS	72 100	55 80	48 70	41 60	34 50	27 40	0 0
G243	01 Statistics 3 MEI (Z3)	Raw	72	56	48	41	34	27	0

UMS

100

80

70

60

50

40

0

GCE Quantitative Methods (MEI)

			Max Mark	а	b	С	d	е	u
G244	01 Introduction to Quantitative Methods MEI	Raw	72	58	50	43	36	28	0
G244	02 Introduction to Quantitative Methods MEI	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
G245	01 Statistics 1 MEI	Raw UMS	72	59	52	46	40 50	34	0
			100	80	70	60	50	40	0
G246	01 Decision 1 MEI	Raw	72	48	43	38	34	30	0
		UMS	100	80	70	60	50	40	0

Level 3 Certificate and FSMQ raw mark grade boundaries June 2016 series

For more information about results and grade calculations, see www.ocr.org.uk/ocr-for/learners-and-parents/getting-your-results

			Max Mark	a*	а	b	С	d	е
860	01 Mathematics for Engineering		This unit	has no	ontrios	in lu	no 201	16	
1860	02 Mathematics for Engineering		This unit has no entries in June 2016						
aval 2 Ca	ertificate Mathematical Techniques and Applications for Engineers								
ever 5 Ce	a micale Mamematical rechniques and Applications for Engineers		Max Mark	a*	а	b	с	d	е
1865	01 Component 1	Raw	60	48	42	36	30	24	18
evel 3 Ce	ertificate Mathematics - Quantitative Reasoning (MEI) (GQ Reform)								
			Max Mark	а	b	С	d	е	u
1866	01 Introduction to guantitative reasoning	Raw	72	55	47	39	31	23	0
1866	02 Critical maths	Raw	60	47	41	35	29	23	0
		Overall	132	111	96	81	66	51	0
		Overall	132	111	96	81	66	51	0
evel 3 Ce	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform)	Overall	132	111	96	81	66	51	0
_evel 3 Ce	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform)	Overall	132 Max Mark	111 a	96 b	81 c	66 d	51 e	0 u
	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform) 01 Introduction to quantitative reasoning	Overall Raw						-	
-1867			Max Mark	а	b	С	d	е	u
H867	01 Introduction to quantitative reasoning	Raw	Max Mark 72	a 55	b 47	c 39	d 31	e 23	u 0
H867 H867	01 Introduction to quantitative reasoning 02 Statistical problem solving	Raw Raw	Max Mark 72 60	a 55 40	b 47 34	c 39 28	d 31 23	e 23 18	u 0 0
H867 H867	01 Introduction to quantitative reasoning	Raw Raw	Max Mark 72 60 132	a 55 40 103	b 47 34 88	c 39 28 73	d 31 23 59	e 23 18 45	u 0 0
H867 H867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ)	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0
H867 H867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving	Raw Raw	Max Mark 72 60 132	a 55 40 103	b 47 34 88	c 39 28 73	d 31 23 59	e 23 18 45	u 0 0
1867 1867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ) 01 Additional Mathematics	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0
-1867 -1867 Advanced 5993	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ)	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0

Version	Details of change
11	Correction to Overall grade boundaries for H866
1.1	Correction to Overall grade boundaries for H867